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Abstract

The properties and applications of the normal log-normal (NLN) mixture are

considered. The moment of the NLN mixture is shown to be finite for any

positive order. The expectations of exponential functions of a NLN mixture

variable are also investigated. The kurtosis and skewness of the NLN mixture

are explicitly shown to be determined by the variance of the log-normal and

the correlation between the normal and log-normal. The issue of testing

the NLN mixture is discussed. The NLN mixture is fitted to a set of cross-

sectional data and a set of time-series data to demonstrate its applications.

In the time series application, the ARCH-M effect and leverage effect are

separately estimated and both appear to be supported by the data.
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1 Introduction

The normal log-normal (NLN) mixture in this paper is defined as the distri-

bution of the product of a normal random variable of a log-normal random

variable that are generally correlated. The NLN mixture has long been rec-

ognized as a useful distribution for describing speculative price changes or

returns. Clark (1973) showed that the marginal distribution of price changes

should be the NLN mixture rather than a member of the stable family.

Tauchen and Pitts (1983) introduced a bi-variate model for price changes

and trading volumes, where the marginal distribution of the price changes

was the NLN mixture. Empirical work of Hsieh (1989) demonstrated the

usefulness of the NLN mixture in generalized autoregressive conditional het-

eroskedasticity (GARCH) type models (Engle (1982) and Bollerslev (1986)).

The assumption of zero correlation between the normal and log-normal was

maintained in the above articles.

More recently, in the literature of stochastic volatility (SV) models (see

Ghysels et al (1996)), the distribution of shocks to returns is also the NLN

mixture (when normality is assumed for both the mean and the log vari-

ance processes) 1. The SV models generally allow for non-zero correlation

between the normal and log-normal, which is labelled as the leverage effect

of Black (1976). Ghysels et al (1996) showed that the absolute moment of

a SV process is finite for any positive order under the assumption of zero

correlation. We also refer to Koopman and Uspensky (2002) for applications

and references of the SV models.

In this paper, we investigate the moment properties of the NLN mixture

with non-zero correlation between the normal and log-normal. Similar to the

1It is occasionally assumed in the SV models that the log-normal shock (to the log

variance) is one-lag behind the normal shock (to the return)
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result of Ghysels et al (1996), the moment of the NLN mixture is shown to

be finite for any positive order. By deriving explicitly the first four centered-

moments, we also show that the skewness and kurtosis are determined by the

variance of the log-normal and the correlation and that the NLN mixture is

generally skewed and leptokurtotic.

In exponential GARCH (EGARCH) models, it is desirable to determine

the existence of expectations of exponential functions of a NLN mixture vari-

able in order to assert the stationarity of data generating processes. Similar

to a result of Nelson (1992), we find that E exp{au} does not exist for any

constant a �= 0, where u is the NLN mixture random variable. For a function

τ(u) that is linear for small |u| and logarithmic for large |u|, we show that

E exp{aτ(u)} is finite for any a.

The NLN mixture density function is reduced to the normal density when

the log-normal variance approaches to zero. This implies that, in testing the

null hypothesis of the normal distribution against the alternative of the NLN

mixture, the correlation parameter is unidentified under the null. Along

the line of Andrews and Ploberger (1994,1995), a strategy for testing the

NLN mixture is suggested, which may ease the computational burden of the

mixture test in certain situations.

We argue that the NLN mixture is useful in a cross-sectional context

where the error terms in a regression model possess idiosyncratic variances.

To demonstrate the cross-sectional applications, a set of annual cross-sectional

stock returns from the Australian Stock Exchange is fitted to the NLN mix-

ture, using the maximum likelihood (ML) method. The NLN mixture is

compared with the normal, t and skewed t distributions for this data set.

The NLN mixture appears to be able to capture the heterogeneity in the

error term’s variance.
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As a time-series application, a general SV model is considered as a starting

point for modelling speculative return series. Following the ARCH literature,

we allow the conditional log variance process to depend directly on past

shocks such that volatility clustering can be captured. However, we maintain

the SV specification that the log variance is the sum of the conditional log

variance and a contemporaneous shock. The resulting model turns out to be

an EGARCH model with ARCH in mean (ARCH-M) effect, where the iid

disturbance term has the NLN mixture distribution. An interesting feature

of this model is that the (positive) ARCH-M effect is separated from the

(negative) leverage effect, making the model useful in quantifying these effects

separately. A filtering function (linear for small shocks and logarithmic for

large shocks) is introduced in the log variance process for two purposes. First,

it ensures the stationarity of the model’s data generating process. Second,

it reduces, to the extent of an estimable parameter, the impact of extremely

large shocks on the conditional variance and makes the model robust to

outliers. The NLN based model is estimated, using the ML method, for a

SP500 return series of Koopman and Uspensky (2002). The model’s fit to

the data appears reasonably good. The estimation results lend some support

to the positive ARCH-M effect and the negative leverage effect.

Since the NLN mixture density function can only be expressed as an

integral, the density evaluation required by the ML estimation is carried out

using Romberg’s numerical integration method. A subroutine in Fortran-90

for computing the density function is available upon request.

Section 2 contains some properties of the NLN mixture. Section 3 is a

brief discussion on mixture test. Sections 4 and 5 are respectively examples

for cross-sectional and time-series applications. Sections 6 concludes and

Section 7 collects proofs. Throughout the paper, the (natural) exponential
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function are expressed either by exp(x) or simply ex.

2 Normal Log-normal Mixture

Consider the random variable u given by

u = e
1
2
ηε, (1)

where ε and η are random variables satisfying


 ε

η


 ∼ N

(

 0

0


 ,


 1 ρσ

ρσ σ2




)
, −1 < ρ < 1 (2)

with σ and ρ being constant parameters. The random variable u will be

labelled as the normal log-normal (NLN) mixture. In the context of time

series, with the time index t attached to (ε, η), the mixture e
1
2
ηtεt (with a

correction in mean) can be viewed as the simplest stochastic volatility model

for speculative return series, where ε and η are respectively the shocks to the

mean and log-variance of the return.

The distribution of u is a mixture of normals and its conditional distribu-

tion is N
(
(ρ/σ)ηe

1
2
η, (1−ρ2)eη

)
for each given η. The joint density function

of [u, η]′ can be written as

pdfu,η(u, η) = pdfu|η(u|η)× pdfη(η)

= [2π(1− ρ2)eη]−
1
2 exp{− 1

2(1 − ρ2)eη
[u − (ρ/σ)ηe

1
2
η]2}

× (2πσ2)−
1
2 exp{− 1

2σ2
η2} (3)

where pdfη(·) is the marginal density function of η and pdfu|η(·|η) is the

conditional density function of u for given η. The function pdfu|η(·|η) is not

defined for σ = 0 (when η degenerates to zero).
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The marginal density function of u is given by

pdfu(u|σ, ρ) =
∫ ∞

−∞
pdfu|η(u|η)pdfη(η)dη.

By the transformation η = σy, the above integral becomes

pdfu(u|σ, ρ) =
∫ ∞

−∞
f(u, y|σ, ρ)φ(y)dy, (4)

where φ(·) is the standard normal density and

f(u, y|σ, ρ) = [2π(1− ρ2)eσy]−
1
2 exp{− [u − ρye

1
2
σy]2

2(1 − ρ2)eσy
}.

Although the analytical form of pdfu(u|σ, ρ) is unknown, it can be readily

evaluated for given (u, σ, ρ) either by simulation or by numerical integration.

We note that f(u, y|σ, ρ) = f(u,−y| − σ,−ρ) and the distribution of

y is symmetric about zero. Hence, pdfu(u|σ, ρ) = pdfu(u| − σ,−ρ). The

implication of this, which is used in Section3, is that the usual restriction

“σ ≥ 0” can be ignored in estimating and testing the NLN mixture.

Let Ψ = {(σ, ρ) : σ ∈ (−σ̄, σ̄), ρ ∈ (−ρ̄, ρ̄)} be a space of (σ, ρ), where

σ̄ > 0 and 0 < ρ̄ < 1. The function f(u, y|σ, ρ) in (4) satisfies

f(u, y|σ, ρ) ≤ f̄(y) =




(2π(1 − ρ̄2)eσ̄y)−
1
2 , if y < 0

(2π(1 − ρ̄2)e−σ̄y)−
1
2 , if y ≥ 0

for all u and all (σ, ρ) ∈ Ψ. As
∫ ∞
−∞ f̄(y)φ(y)dy is finite, by the dominated

convergence theorem, the density pdfu(u|σ, ρ) is continuous at σ = 0. Fur-

ther, it can easily be shown that pdfu(u|0, ρ) = φ(u) is the standard normal

density. Therefore, ρ is unidentified when σ = 0.

It can be verified that the first four centered moments of u are given by

c1 = E(u) =
1

2
ρσe

1
8
σ2

,

c2 = E(u − c1)
2 = e

1
2
σ2

[1 + ρ2σ2(1 − 1

4
e−

1
4
σ2

)] ,
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c3 = E(u − c1)
3 = ρσe

9
8
σ2{(1 − ρ2)[

9

2
− 3

2
e−

1
2
σ2

]

+ρ2[(
9

2
+

27

8
σ2) − 3

2
(1 + σ2)e−

1
2
σ2

+
1

4
σ2e−

3
4
σ2

]} ,

c4 = E(u − c1)
4 = e2σ2{3(1 − ρ2)2

+6ρ2(1− ρ2)[(1 + 4σ2) − 3

2
σ2e−

3
4
σ2

+
1

4
σ2e−

5
4
σ2

]

+ρ4[(3 + 24σ2 + 16σ4) − (9 +
27

4
σ2)e−

3
4
σ2

+
3

2
(1 + σ2)σ2e−

5
4
σ2 − 3

16
σ4e−

3
2
σ2

]} . (5)

If ρ is small such that the terms associated with ρ2 can be ignored, then the

skewness and kurtosis of u are given by

Skewness ≈ 1

2
ρσe

3
8
σ2

(9 − 3e−
1
2
σ2

),

Kurtosis ≈ 3eσ2

. (6)

The marginal distribution of u is skewed and thick-tailed when both σ and

ρ are non-zero. The kurtosis is mainly controlled by σ2 and the skewness

by ρσ. These properties of u appear desirable for modelling the returns

of speculative prices, which are often found to have sample distributions

with leptokurtosis (thick-tails and a large peak at the origin) and negative

skewness. The kurtosis formula 3eσ2
was given in Clark (1973) for the case

that ρ = 0.

To compare pdfu(u|σ, ρ) with the standard normal pdf, the density func-

tion of the standardized mixture variable v = (u − c1)/
√

c2

m(v| σ, ρ) =
√

c2 pdfu(c1 +
√

c2 v| σ, ρ) (7)

is plotted with φ(v) in Figure 1 for various values of σ and ρ. Evidently,

m(v|σ, ρ) is close to φ(v) for small σ and possesses prominent leptokurtosis

for large σ. Further, when σ > 0 and ρ < 0, the distribution has a positive

mode and a thick left-tail. We also note that m(v| − σ,−ρ) = m(v| σ, ρ).
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In addition to the moments given in (5), the following propositions provide

further results regarding the moments of u

Proposition 1 For any finite integer k > 0, E|u|k < ∞.

While all moments of u exist as indicated in the above proposition, it is

the expectation of exponential functions of u that is of interest in exponential

ARCH models. We provide the following propositions for this purpose, where

v+ = max(0, v), v− = max(0,−v) and v = (u − c1)/
√

c2 .

Proposition 2

(a) For any finite constant a �= 0, E(eau) = ∞.

(b) E(eav+
) and E(eav−) are finite if and only if a ≤ 0.

The above results also imply that E(ed1|v|+d2v) exists if and only if both

d1 + d1 < 0 and d1 − d2 < 0. The integral E(eau) diverges because u = e
1
2
ηε

contains an exponential factor that dominates eventually. Intuitively, if a

function τ(u) behaves like logarithm for large |u|, the expectation of eτ(u)

should exist. This idea is formalized as the following proposition.

Proposition 3

(a) For any continuous function τ(·) that satisfies

τ(u) ≤



a0 + a1 ln(a2 + a3|u|), for |u| > b

a4, for |u| ≤ b
,

where a0, a1, a2, a3, a4, b are constants with a1 > 0, a3 > 0, b > 0 and b being

sufficiently large, E(eτ(u)) is finite.

(b) For the function

τb(x) =




−b − ln(1 + |x + b|), for x < −b

x, for |x| ≤ b

b + ln(1 + |x − b|), for x > b

,
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where b > 0, E(ed1|τb(v)|+d2τb(v)) is finite for any constants d1 and d2. Further,

E(eaτb(v
+)) and E(eaτb(v

−)) are also finite for any constant a.

The function τb(x) is continuous, increasing, odd, linear for small |x| and

logarithmic for large |x|. It can be verified that the first-order derivative of

τb(·) is continuous.

Below is a summary of the properties of the NLN mixture, where v =

(u − c1)/
√

c2 and m(v|σ, ρ) is the density function of v.

• The kth moment of v is finite for any finite k.

• The mean and variance of v are zero and one respectively.

• When σ = 0, m(v|σ, ρ) = φ(v) and ρ is unidentified.

• When σ > 0 and ρ = 0, m(v|σ, ρ) is symmetric with leptokurtosis.

• When σ > 0 and ρ < 0, m(v|σ, ρ) is skewed to the left.

• When σ > 0 and ρ > 0, m(v|σ, ρ) is skewed to the right.

• E(eau) does not exist for any a �= 0.

• E(ed1|τb(v)|+d2τb(v)) exists for any constants d1 and d2.

The appeal of the NLN mixture pdfu(u|σ, ρ), or m(v|σ, ρ), in modelling spec-

ulative returns has long been recognized in the literature [see Clark (1973),

Tauchen and Pitts (1983) and Hsieh (1989) among others]. However, the

properties of the NLN mixture given in this section appear to be new.

3 Mixture Test

In applications, an obvious question is whether or not the mixture distribu-

tion is favored over the normal distribution. The question can be answered
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by testing H0 : σ = 0 (normal) against H1 : σ �= 0 (mixture). However, since

ρ is not identified under H0, the usual χ2 asymptotics does not apply to the

likelihood ratio (LR) statistic in this context. In general, the asymptotic null

distribution of the LR statistic and its critical values need to be simulated

on a case-by-case basis [see Andrews and Ploberger (1994, 1995)].

To take advantage of the χ2 distribution, we consider the following three

hypotheses

H0 : σ = 0; Hr : σ �= 0, ρ = 0; H1 : σ �= 0, ρ ∈ (−1, 1);

where ρ is not identified under H0. Let L(r) be the LR statistic for testing H0

against Hr. The χ2 critical values are approximately correct for L(r) because

testing H0 against Hr has no complications. Therefore, H0 is rejected if L(r)

is greater than the critical value (3.84 at 5%, say). In this case, the hypotheses

about ρ can be further tested on the models with σ �= 0 in the usual manner.

However, if L(r) is not greater than the critical value (3.84), we cannot

infer the validity of H0 because Hr is only a restricted version of H1. In

this case, H0 has to be tested directly against H1, where the likelihood is

maximized over all feasible ρ, and corresponding critical values need to be

simulated.

Because simulating critical values in non-linear models is difficult (it in-

volves thousands of non-linear maximizing operations), the above description

of the mixture test is particularly useful in the case that H0 can be rejected

in favor of Hr (which is true for the applications in Sections 4 and 5 where

simulating critical values is avoided).
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4 Example for Cross-sectional Data

We demonstrate that (1) may be used to describe cross-sectional data. It

is useful for modelling a heterogeneous population where the variance of the

error term in a regression model varies from one individual to another. In

such cases, treating the variance as random may be desirable.

In particular, for cross-sectional data {y1, . . ., yn}, we consider the sim-

plest regression model yi = µ0 + e
1
2
hiεi (i = 1, . . ., n), where the variance of

disturbance is determined by hi = λ+ηi, µ0 and λ are constant parameters,

(εi, ηi) are iid and follow the distribution in (2). The specification hi = λ+ηi

captures idiosyncratic variations in the variance of the error term e
1
2
hiεi (sub-

ject to a mean correction). The correlation between ηi and εi quantifies the

joint behavior of variations in mean and variance. Apparently, this model

can easily be extended to the multiple regression model yi = µ0+xiβ+e
1
2
hiεi,

where xi is a vector of regressors and β a vector of parameters.

The above model can be rewritten as

yi = µ + e
1
2
ωvi, i = 1, . . ., n, (8)

where vi are independent errors with the distribution (7), µ = µ0 + c1e
1
2
λ

e
1
2
ω =

√
c2e

1
2
λ, c1 and c2 are given in (5). We recall that the parameter σ

and ρ in (7) control the skewness and kurtosis of the NLN distribution.

We consider the cross-sectional returns from the top 200 stocks listed in

Australian Stock Exchange (ASX200). The annual log returns, for the year

from 15 January 2002 to 15 January 2003, of the ASX200 stocks are used.

As some stocks were not listed on 15 January 2002, there are only 192 useful

observations. A uniform distribution is used to obtain a random sample of

size 100 from the 192 observations. The descriptive statistics of the sample

are presented in Table 1, which exhibit skewness and excess kurtosis.
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Table 1. Descriptive Statistics for 100 Annual Returns

Standard Excess
Mean Deviation Skewness Kurtosis Minimum Maximum

-0.0738 0.3578 -0.9779 1.7778 -1.3556 .7792

The data are fitted to the five models listed below

• M0: standard normal distribution,

• M1: normal log-normal mixture distribution with ρ = 0,

• M2: normal log-normal mixture distribution,

• MT: Student’s t distribution (vi follows t),

• MS: Skewed t distribution (vi follows skewed t).

The Skewed t distribution, introduced by Hansen (1994), has the density

function

κ(z|ν, ϕ) =




bc
(
1 + 1

ν−2
( bz+a

1−ϕ
)2

)−(ν+1)/2
, z < −a/b

bc
(
1 + 1

ν−2
( bz+a

1+ϕ
)2

)−(ν+1)/2
, z ≥ −a/b

, (9)

where ν ∈ (2,∞), ϕ ∈ (−1, 1), a = 4ϕc(ν−2)/(ν−1), b2 = 1+3ϕ2−a2, and

c = [Γ(ν+1
2

)/Γ(ν
2
)]/

√
π(ν − 2). The mean, mode and variance of the distri-

bution are 0, −a/b and 1 respectively. When ϕ = 0, the distribution reduces

to the Student’s t (symmetric). When ϕ < 0 or ϕ > 0, the distribution is

skewed to the left or right respectively.

The estimation results for the five models are reported in Table 2. Clearly,

M1 is a restricted version of M2 (ρ = 0) and and M0 is a restricted version

of M1 (σ = 0). A direct comparison of M0 and M2 is not straightforward

because ρ is not identified under the null model M0. However, using the
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strategy in Section 3, we infer that M0 is rejected in favor of M1 and M1

is rejected in favor of M2 (the asymptotic p-values for the likelihood ratios

are less than 1%). Similarly, as MT is nested in MS, the likelihood ratio

indicates that MT should be rejected in favor of MS.

Table 2. Estimation Results for ASX200 Annual Returns

Parameter M0 M1 M2 MT MS

µ -.0738 -.0009 -.0775 -.0130 -.0912

[.036] [.052] [.036] [.042] [.038]

ω -2.0658 -1.9914 -1.8020 -1.8346 -1.5580

[.191] [.253] [.295] [.437] [.678]

σ, ν 1.0390 1.0886 3.1537 2.8332

[.342] [.233] [1.231] [.929]

ρ, ϕ -.5009 -.4552

[.119] [.115]

LogL -38.606 -33.327 -26.998 -33.543 -26.938

An advantage of M2 over MS is that the parameters (σ, ρ) have a natural

interpretation. For M2, the estimate of the correlation between the mean

error and variance error (ρ) is significantly negative and may be interpreted

as a piece of evidence for the leverage effect (the tendency that a decrease in

the stock price increases the stock’s riskiness or volatility).

The coefficient of variation

CV =
√

Var(eht)/E(eht) =
√

eσ2 − 1

may be used to compare the variation in the variance to the variation in the

mean, as the denominator of CV is proportional to the average conditional

variance (given ηt) of the error term to the mean equation 2. From the point

2The conditional variance is c2(1 − ρ2)eht .
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estimates for M2, CV is estimated as 1.507 with the standard error being

0.551, signifying a great deal of variations in the variance. Presumably,

extending the model to the multiple regression and including firm-specific

factors (e.g. market capitalization and sector dummy) would reduce the

variation in the variance.

The density and cumulative distribution functions of M2 and MS (eval-

uated at the point parameter estimates) are presented in Figure 2, together

with the standard normal and standardized data distributions. These graphs

present some visual evidence that M2 and MS fit the data better than M0

(standard normal), in the sense that the M2 and MS curves are generally

closer to the data curve. The graphs also indicate that M2 fits data slightly

better than MS.

Both M2 and MS capture the kurtosis and skewness of the data but

neither matches the sample kurtosis and skewness in Table 1. For M2, the

kurtosis and skewness implied by the point estimates of (σ, ρ) are 19.08 and

-2.74 respectively, far different from the simple sample estimates in Table

1. Similarly, for MS, the point estimate for the degree of freedom (ν) imply

that the third and fourth moments do not exist. It is likely that the mean

function (a constant) here is too simply to adequately explain all features

in the data by either M2 or MS. However, given that the simple sample

skewness and kurtosis measures are not robust (Kim and White, 2004), it is

not clear whether matching the sample skewness and kurtosis is a desirable

criterion to judge a model.
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5 Example for Time Series Data

The empirical properties of asset return series have been well documented in

the literature (e.g. Bollerslev et al (1994) and Ghysels et al (1996)). The

main characteristics include thick-tailed distribution (large excess kurtosis),

volatility clustering (strong serial correlation in squared return series) and

leverage effects (negative correlation between shocks to return and to volatil-

ity). Various volatility models have been proposed to capture these charac-

teristics. In the discrete-time context, the volatility models may be divided

into two classes: the autoregressive conditional heteroskedasticiy (ARCH)

models and the stochastic volatility (SV) models.

We show that a change in the variance specification in a SV model leads

to an exponential GARCH (EGARCH) model with the normal log-normal

(NLN) mixture distribution. This model has the following merits. It allows

both leptokurtosis and skewness in the shocks to a return series. It can

separate the ARCH-M effect from the leverage effect. It is relatively robust

to outliers in the sense that the impact of extreme shocks on the return’s

conditional variance is reduced.

A number of thick-tailed distributions have been suggested for ARCH-

type models, including the Student-t distribution, generalized-error distribu-

tion and skewed-t distribution (Hansen, 1996). Of these, only the skewed-t

distribution accommodates skewness. An advantage of the NLN distribution

in (7) is the useful interpretations for its parameters (σ, ρ).

The NLN-based volatility model is estimated for a SP500 return series

of Koopman and Uspensky (2002).. In this section, symbols without a time

subscript represent constant parameter.
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5.1 Model

Let the return of an asset in the period t be xt = ln(St/St−1), where St the

spot price of the asset at the end of period t. Suppose that the return xt can

be modelled as

xt = µt + e
1
2
htεt ht = λt + ηt, (10)

where the 2-dimensional disturbance series [εt, ηt]
′ is iid with the distribution

(2), µt and λt depend only on information prior to t. When λt is a function

of ht−1 only, the above model is the SV model. When λt is a function of

(εt−1, λt−1) and σ = 0 (or ηt ≡ 0), the above model is the ARCH-type model.

From a practical point of view, it is reasonable to favor a model that allows

εt−1 to directly impact ht without ruling out the contemporaneous shock ηt

to ht. Taking the middle way between the SV model and the ARCH-type

model, we specify λt as a function of (vt−1, λt−1),

λt = ω + αg(vt−1) + βλt−1, (11)

where g(·) is a function, vt = (ut − c1)/
√

c2 with ut = e
1
2
ηtεt, c1 = E(ut) and

c2 = Var(ut) (as given in (5)). Under this specification, xt = µt + e
1
2
λtut.

If g(vt−1) = |vt−1| + γvt−1, (11) becomes the EGARCH formulation of

Nelson (1991) that allows asymmetric effects of positive and negative shocks.

We note that g(vt−1) = (1 + γ)v+
t−1 + (1 − γ)v−

t−1 with v+
t−1 = max(0, vt−1)

and v−
t−1 = max(0,−vt−1). When |β| < 1, according to Proposition 2, the

(unconditional) expectation of e
1
2
λt exist if and only if α(1 + γ) ≤ 0 and

α(1 − γ) ≤ 0, a result similar to that of Theorem A1.2 in Nelson (1991).

This condition is unlikely met in practice because the conditional variance is

typically positively related to past shocks (clustering).

Instead, we propose to use

g(vt−1) = |τb(vt−1)| + γ τb(vt−1), (12)
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where the function τb(·) is defined in Proposition 3. There are a number of

advantages for choosing this function. First, the asymmetric effects of past

shocks on λt are carried over from the original Nelson specification. Second,

the the data-generating process for xt is covariance stationary for all possible

values of α and γ. Finally, the function τb(·) dampers the impact of large

shocks, making λt robust to outliers. The threshold b here is estimable.

We specify the mean function µt as

µt = µ + δe
1
2
λt , (13)

where the ARCH-M effect of Engle et al (1987) is accommodated. Under

this specification, the mean equation for xt becomes

xt = µ + (δ + c1)e
1
2
λt +

√
c2e

1
2
λtvt. (14)

Let Ft be the set of observable information at t (the sigma-field generated by

{λ0, x1, . . ., xt}). The conditional mean and variance becomes E(xt|Ft−1) =

µ + (δ + c1)e
1
2
λt and Var(xt|Ft−1) = c2e

λt respectively. The iid shock to xt,

vt = (ut − c1)/
√

c2, follows the NLN mixture distribution in (7).

The model defined in (10-14), while being derived from a SV model, is

clearly an EGARCH model of Nelson (1991) with the ARCH-M effect. It can

obviously be extended to higher orders. By Theorem 2.1 of Nelson (1991), xt

is strictly stationary and ergodic and λt is covariance stationary if and only

if |β| < 1. For higher order cases, the stationarity condition becomes that

the roots of the autoregressive polynomial (with respect to λt and its lags)

are outside the unit circle. Under the same condition, for any finite b > 0 in

τb(·), xt is also covariance stationary by Proposition 3.

An interesting feature of the model is that the total ARCH-M effect is

characterized by (δ + c1). Here, δ may be viewed as the asset’s risk pre-

mium, which should be positive according to the capital-asset-pricing model
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(CAPM). On the other hand, c1 = 1
2
ρσe

1
8
σ2

(not a free parameter) is de-

termined by ρ, the leverage effect or the correlation between the contem-

poraneous shocks εt and ηt, which is theoretically negative as argued by

Black (1976). Therefore, the sign of the total ARCH-M effect (δ + c1) is

generally undetermined and dependent on which effect dominates in a given

return series. Indeed, the empirical evidence on the relationship between the

conditional mean and the conditional variance of speculative return series

has been mixed and inconclusive (see Koopman and Uspensky (2002) for a

concise discussion and references). Towards resolving this issue, our model

makes it possible that the risk premium effect (δ) and the leverage effect (ρ)

can be quantified separately.

For a given sample {x1, . . ., xn}, the parameter vector

θ = (µ, δ, ω, d, γ, α, β, σ, ρ),

where d = 1/
√

b (or b = 1/d2) with b being defined in Proposition 3, can

be estimated by the maximum likelihood (ML) method. The log likelihood

function is given by

1(θ|λ0, v0) =
n∑

t=1

{
ln

[
m

(xt − µ − (δ + c1)e
1
2
λt

√
c2e

1
2
λt

∣∣∣σ, ρ
)]

− 1

2
(λt + ln c2)

}
, (15)

where the density function m(v|σ, ρ) is given in (7) and (4), which is evaluated

by numerical integration using Romberg’s method. The initial values λ0 and

v0 are treated as known. In estimation, λ0, v0 and |v0| are replaced by the

log sample variance, zero and the sample absolute deviation respectively.

The consistency and asymptotic normality of the quasi-ML estimator of

GARCH models have been established by Lee and Hansen (1994), Lums-

daine (1996) and Ling and McAleer (2003) among others. Their results are

obtained under the assumption that the density function used for the quasi-

ML estimation is the standard normal density, which is not applicable to
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the ML estimation in this paper. Since establishing asymptotic properties

for the NLN-based EGARCH model here is beyond the scope of this paper,

we will assume that the consistency and asymptotic normality hold for the

ML estimator of (15). The interpretations of the estimation results in this

section are based on this assumption.

5.2 Data and Estimation Results

A daily excess return series of the SP500 price index, taken from Koopman

and Uspensky (2002), is used to demonstrate the model suggested in the

previous section. The series covers the period from 1/Jan/88 to 31/Dec/98,

consisting of 2869 observations. Table 3 lists some descriptive statistics.

Table 3. Descriptive Statistics for Daily SP500 Return Series

Standard Excess
Mean Deviation Skewness Kurtosis Minimum Maximum

0.0415 0.8643 -0.6643 7.9538 -7.1262 4.9748

The data are fitted to the five models that mainly differ in the shock’s

distribution. These are

• M0: standard normal distribution,

• M1: normal log-normal mixture distribution with ρ = 0,

• M2: normal log-normal mixture distribution,

• MT: Student’s t distribution,

• MS: Skewed t distribution.
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We note that M2, given by (10-14), nests M0 and M1. The models MT and

MS are defined by (11), (12) and (14) with c1 = 0, c2 = 1, and vt being the

t distribution and the skewed t distribution respectively.

Table 4. Estimation Results for SP500 Return Series

Parameter M0 M1 M2 MT MS

µ -.0293 -.0454 -.0458 -.0349 -.0366

[.039] [.063] [.041] [.043] [.043]

δ .0784 .1410 .1461 .1078 .1026

[.053] [.099] [.065] [.057] [.057]

ω -.0729 -.0843 -.0832 -.0767 -.0765

[.019] [.020] [.019] [.016] [.016]

d .4111 .5387 .5269 .3859 .3843

[.088] [.120] [.103] [.093] [.092]

γ -.5729 -.6151 -.6214 -.5834 -.5891

[.131] [.132] [.126] [.128] [.128]

α .0905 .0982 .0977 .0955 .0956

[.022] [.020] [.019] [.019] [.019]

β .9852 .9852 .9851 .9860 .9857

[.008] [.008] [.007] [.007] [.007]

σ, ν .8432 .8315 4.7701 4.8140

[.056] [.055] [.474] [.478]

ρ, ϕ -.0483 -.0204

[.027] [.022]

LogL -3391.1 -3231.3 -3230.0 -3235.2 -3234.9

Skewness -0.8545 -0.7734 -0.7753 -0.8677 -0.8667

Kurtosis 6.5005 5.7888 5.7917 6.6671 6.6544

Q12 18.6 18.1 18.2 18.5 18.5
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The estimation results for these models are presented in Table 4. The

standard errors, using the robust formula of White (1982), are given in the

brackets.

First, the evidence for thick-tailed distributions appears strong. The large

likelihood ratio of M1 against M0 (319.6) unambiguously favors the NLN mix-

ture that is thick-tailed. The point estimate for σ implies that the estimate of

CV for vt,
√

Var(eηt)/E(eηt) =
√

eσ2 − 1, is 0.998 with standard error 0.091.

The estimated degrees of freedom for MT and MS (approximately 4.8) also

clearly indicate leptokurtosis in the shock’s distribution.

Second, there is mild evidence supporting the leverage effect (or negative

skewness in the shocks). The p-value of the one-tailed t-ratio for ρ < 0 is

0.037. Comparing M1 and M2, we note that the presence of ρ leads to smaller

the standard errors. However, the skewness parameter (ϕ) in MS appears

insignificant.

Third, there is some evidence for a positive ARCH-M effect (δ > 0).

For M0, MT and MS, the positive ARCH-M effect is significant at the 10%

level if tested on one tail and significant at the 15% level if tested on two

tails. For M1, the one-sided and two-sided p-values for δ are 0.077 and

0.154 respectively. Remarkably, for M2, the ARCH-M effect δ is significantly

positive at the 1.5% level. The sharper result for the ARCH-M effect in

M2 comes from the fact that the positive ARCH-M effect is separated from

the negative leverage effect c1 in the model. The implied point estimate for

c1 is ĉ1 = −0.0219 with a standard error of 0.013 (calculated using “delta”

method), which is significant at the 5% level on one-tail and at 10% on

two-tails.

Fourth, the filtering function τb(·) is effective in all models, in the sense

that the parameter d = 1/
√

b is significantly different from zero in all models.
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As mentioned in the previous sub-section, a finite b (or non-zero d) not only

ensures the covariance-stationarity of xt but also makes the λt robust to

outliers. For example, the point estimates for d in M2 is 0.5269, implying

that the impact of shocks outside 3.602 (point estimates for b) on the log-

variance process in M2 is reduced.

Fifth, the stylized GARCH modelling results in the literature are also

observed in Table 4. The β estimates are all close to unity, signalling strong

persistence in the variance process. The asymmetric effects of shocks (neg-

ative γ) are also significantly visible in all models. Further, the positive

estimates of 1 ± γ and α capture the clustering effect in volatilities.

All models fit the data reasonably well, in the sense that the serial corre-

lation in the standardized residuals (v̂t) appears insignificant. In all models,

none of the estimated autocorrelations (up to 50 lags) in v̂t is significant. The

Ljung-Box Q statistics also indicate the absence of autocorrelation in v̂t if the

degrees of freedom for the χ2 distribution are set as the number of squared

autocorrelations in Q. However, if the degrees of freedom are adjusted for

the number of estimated parameters, the Q statistics reject at 5% the null

that the first k autocorrelations are zero for k ≤ 25 but cannot reject the null

for k > 25. The Q12 statistics are given in Table 4. Adding the lagged return

xt−1 in the mean function (its coefficient is not significant for all models)

does not qualitatively alter the results in Table 4. The above exercises are

also carried out for v̂2
t , v̂3

t and v̂4
t and no evidence for autocorrelation can be

found, and Q statistics are below the 5% critical values for all k in all models

with the adjusted degrees of freedom.

The NLN distribution (at the point estimates of σ and ρ) and the sample

distribution of the standardized residuals from M2 are plotted in Figure 3.

The fit of M2 appears reasonable in Figure 3.
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The sample skewness and excess kurtosis for the standardized residuals

in Table 4 show similar magnitudes for all models. The skewness and excess

kurtosis implied by the point estimates in the NLN mixture model (M2) are

-0.1788 and 3.0362 respectively, which do not match their sample counter-

parts. Again, it is not clear whether matching these is a desirable criterion,

given that the sample skewness and kurtosis are sensitive to outliers (Kim

and White, 2004).

The NLN mixture model (M2) were also estimated with the EGARCH(1,2)

and EGARCH(2,1) lag-specifications in the variance process. Judged by the

SBIC criterion, the EGARCH(1,1) specification (as reported in Table 4) is

preferable. Further, the results from these different lag structures are quali-

tatively identical to those in Table 4.

Koopman and Uspensky (2002) analyzed this data set, using the stochas-

tic volatility in mean (SVM) model and the GARCH-M model. Since their

SVM model markedly differs from the model presented in this section (for

example, the contemporaneous variance of xt was included in their mean

equation), their results are not directly comparable with those in Table 4.

However, the positive ARCH-M effect in Table 4 is consistent with their

findings in the GARCH-M model.

6 Conclusion

We investigate the properties of the normal log-normal (NLN) mixture and

demonstrate its applications. The moment properties given here are useful

for establishing covariance stationarity for EGARCH type processes. The

NLN mixture is particularly useful in the cases where data are skewed and

leptokurtic and in the cases where data are heterogeneous in variance. In the
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cross-sectional example, the NLN mixture model appears able to capture the

extent of variations in the variance of a heterogeneous data set. In the time-

series context, the NLN mixture based model draws merits from both ARCH

type models and SV type models. The resulting model is able to separate

the positive ARCH-M effect from the negative leverage effect. We find some

evidence, in a SP500 return series, supporting the two opposite effects. The

NLN based model is easier than the SV models to estimate, but is harder

than the ARCH type models to estimate because a uni-variate integration is

required for each density evaluation. While the numerical integration method

(used in this paper) appears effective, it is desirable to find more efficient

methods for evaluating the NLN mixture density function.

7 Proofs

Proof of Proposition 1

This can be shown by writing ε = (ρ/σ)η + ξ with ξ ∼ N(0, (1 − ρ2)) be-

ing independent of η. Then, E|u|k = E|(ρ/σ)ηe
1
2
η + ξe

1
2
η|k < ∞ because

E|ξiηje
1
2
(i+j)η| = E|ξ|iE|ηje

1
2
(i+j)η| < ∞ for any finite i, j ≥ 0. ✷

Proof of Proposition 2

(a) Because ε = (ρ/σ)η + ξ, E(eau|η) = exp{[aρ
σ

ηe−
1
2
η + 1

2
(1 − ρ2)a2]eη}. We

note that the function A(η) = ηke−δη has a unique maximum at η∗ = k/δ,

A(η∗) = (k/δ)ke−k, for k ≥ 0 and δ > 0. Then,

E(eau) =
∫ ∞

−∞
E(eau|η)(2πσ2)−

1
2 exp{− η2

2σ2
}dη

≥
∫ ∞

0
E(eau|η)(2πσ2)−

1
2 exp{− η2

2σ2
}dη

= (2πσ2)−
1
2

∫ ∞

0
exp{[− η2

2σ2
e−η +

aρ

σ
ηe−

1
2
η +

1

2
(1 − ρ2)a2]eη}dη
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≥ (2πσ2)−
1
2

∫ ∞

0
exp{[− 1

2σ2
− |aρ|

σ
+

1

2
(1 − ρ2)a2]eη}dη,

where the final expression diverges to ∞.

(b) The proof of “if” part is trivial because both eav+
and eav− are monotone

and bounded between 0 and 1 if a ≤ 0. The “only if” part is shown by

noticing that, if a > 0,

E(eav+

) ≥ E(eav) = E(ea(u−c1)/
√

c2),

E(eav−) ≥ E(eav) = E(ea(u−c1)/
√

c2),

which diverge to infinity according to (a). ✷

Proof of Proposition 3

(a) Clearly,

E(eτ(u)) =
∫
|u|≤b

eτ(u)pdfudu +
∫
|u|>b

eτ(u)pdfudu,

where the first term on the right-hand side (RHS)is finite. We claim that the

second term on the RHS is also finite because

ln(a2 + a3|u|) < ln(
|a2|
b

+ a3) + ln |u|, for |u| > b

and the second term is bounded by

∫
|u|>b

exp{a0 + a1 ln(
|a2|
b

+ a3)}|u|a1pdfudu,

which by Proposition 1 is finite.

(b) We note that d1|τb(v)| + d1τb(v) ≤ (|d1| + |d2|)b for |v| ≤ b and

d1|τb(v)| + d1τb(v) ≤ (|d1| + |d2|)[b + ln(1 + |c1|/√c2 + b + |u|/√c2)]

for |v| > b. As a function of u, d1|τb(v)| + d1τb(v) satisfies the condition

in (a) and the claimed finiteness follows. The existence of E(eaτb(v
+)) and

E(eaτb(v
−)) can similarly be shown. ✷
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Figure 1. Standardized Density Function m(v|σ, ρ)
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Figure 2. Distribution Comparison
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Figure 3. Distribution Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-10 -8 -6 -4 -2  0  2  4

Standardised Residual

Density Function and Histogram

NLN Mixture
Residual Histogram

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -8 -6 -4 -2  0  2  4

Standardised Residual

Cumulative Distributions

NLN Mixture
Residuals

30


